【正文】
止时,由物体的平衡条件知杆对球的作用力方向竖直向上,且大小等于球的重力mg。小车向右以加速度a运动,设小球受杆的作用力方向与竖直方向的夹角为,如图4所示,根据牛顿第二定律有:,两式相除得:。图4只有当球的加速度且向右时,杆对球的作用力才沿杆的方向,此时才有。小车向左以加速度a运动,根据牛顿第二定律知小球所受重力mg和杆对球的作用力F的合力大小为ma,方向水平向左。根据力的合成知,方向斜向左上方,与竖直方向的夹角为:8. ,在动力小车上固定一直角硬杆ABC,分别系在水平直杆AB两端的轻弹簧和细线将小球P悬吊起来。轻弹簧的劲度系数为k,小球P的质量为m,当小车沿水平地面以加速度a向右运动而达到稳定状态时,轻弹簧保持竖直,而细线与杆的竖直部分的夹角为,试求此时弹簧的形变量。 答案:,,讨论:①若则弹簧伸长②若则弹簧伸长③若则弹簧压缩五、弹簧模型(动力学)1. ,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上。②中弹簧的左端受大小也为F的拉力作用。③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动。④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动。若认为弹簧的质量都为零,以llll4依次表示四个弹簧的伸长量,则有( ) ① ② ③ ④ A. B. C. D. 解析:当弹簧处于静止(或匀速运动)时,弹簧两端受力大小相等,产生的弹力也相等,用其中任意一端产生的弹力代入胡克定律即可求形变。当弹簧处于加速运动状态时,以弹簧为研究对象,由于其质量为零,无论加速度a为多少,仍然可以得到弹簧两端受力大小相等。由于弹簧弹力与施加在弹簧上的外力F是作用力与反作用的关系,因此,弹簧的弹力也处处相等,与静止情况没有区别。在题目所述四种情况中,由于弹簧的右端受到大小皆为F的拉力作用,且弹簧质量都为零,根据作用力与反作用力关系,弹簧产生的弹力大小皆为F,又由四个弹簧完全相同,根据胡克定律,它们的伸长量皆相等,所以正确选项为D。2. 。该装置是在矩形箱子的前、后壁上各安装一个由力敏电阻组成的压力传感器。,滑块可无摩擦的滑动,两弹簧的另一端分别压在传感器a、b上,其压力大小可直接从传感器的液晶显示屏上读出。现将装置沿运动方向固定在汽车上,传感器b在前,传感器a在后,汽车静止时,传感器a、b的示数均为10N(取)(1)若传感器a的示数为14N、求此时汽车的加速度大小和方向。(2)当汽车以怎样的加速度运动时,传感器a的示数为零。 解析:(1),a1的方向向右或向前。(2)根据题意可知,当左侧弹簧弹力时,右侧弹簧的弹力代入数据得,方向向左或向后3. ,一根轻弹簧上端固定在O点,下端系一个钢球P,球处于静止状态。现对球施加一个方向向右的外力F,吏球缓慢偏移。若外力F方向始终水平,移动中弹簧与竖直方向的夹角且弹簧的伸长量不超过弹性限度,则下面给出弹簧伸长量x与的函数关系图象中,最接近的是( ) 答案:D第二章 圆周运动解题模型:一、水平方向的圆盘模型1. ,水平转盘上放有质量为m的物块,当物块到转轴的距离为r时,连接物块和转轴的绳刚好被拉直(绳上张力为零)。物体和转盘间最大静摩擦力是其正压力的μ倍,求:(1)当转盘的角速度时,细绳的拉力。(2)当转盘的角速度时,细绳的拉力。 解析:设转动过程中物体与盘间恰好达到最大静摩擦力时转动的角速度为,则,解得。(1)因为,所以物体所需向心力小于物体与盘间的最大摩擦力,则物与盘间还未到最大静摩擦力,细绳的拉力仍为0,即。(2)因为,所以物体所需向心力大于物与盘间的最大静摩擦力,则细绳将对物体施加拉力,由牛顿的第二定律得:,解得。2. ,在匀速转动的圆盘上,沿直径方向上放置以细线相连的A、B两个小物块。A的质量为,离轴心,B的质量为,离轴心,A、试求:(1)当圆盘转动的角速度为多少时,细线上开始出现张力?(2)欲使A、B与盘面间不发生相对滑动,则圆盘转动的最大角速度为多大?() (1)当圆盘转动的角速度为多少时,细线上开始出现张力?(2)欲使A、B与盘面间不发生相对滑动,则圆盘转动的最大角速度为多大?()解析:(1)较小时,A、B均由静摩擦力充当向心力,增大,可知,它们受到的静摩擦力也增大,而,所以A受到的静摩擦力先达到最大值。再增大,AB间绳子开始受到拉力。由,得:(2)达到后,再增加,B增大的向心力靠增加拉力及摩擦力共同来提供,A增大的向心力靠增加拉力来提供,由于A增大的向心力超过B增加的向心力,再增加,B所受摩擦力逐渐减小,直到为零,如再增加,B所受的摩擦力就反向,直到达最大静摩擦力。如再增加,就不能维持匀速圆周运动了,A、B就在圆盘上滑动起来。设此时角速度为,绳中张力为,对A、B受力分析:对A有对B有联立解得:3. ,两个相同材料制成的靠摩擦传动的轮A和轮B水平放置,两轮半径,当主动轮A匀速转动时,在A轮边缘上放置的小木块恰能相对静止在A轮边缘上。若将小木块放在B轮上,欲使木块相对B轮也静止,则木块距B轮转轴的最大距离为( )A. B. C. D. 答案:C二、行星模型1. 已知氢原子处于基态时,核外电子绕核运动的轨道半径,则氢原子处于量子数3,核外电子绕核运动的速度之比和周期之比为:( )A. ;B. C. D. 以上答案均不对解析:根据经典理论,氢原子核外电子绕核作匀速率圆周运动时,由库仑力提供向心力。即,从而得线速度为周期为又根据玻尔理论,对应于不同量子数的轨道半径与基态时轨道半径r1有下述关系式:。由以上几式可得v的通式为:所以电子在第3不同轨道上运动速度之比为:而周期的通式为:所以,电子在第3不同轨道上运动周期之比为:由此可知,只有选项B是正确的。2. 卫星做圆周运动,由于大气阻力的作用,其轨道的高度将逐渐变化(由于高度变化很缓慢,变化过程中的任一时刻,仍可认为卫星满足匀速圆周运动的规律),下述卫星运动的一些物理量的变化正确的是:( )A. 线速度减小 B. 轨道半径增大 C. 向心加速度增大 D. 周期增大解析:假设轨道半径不变,由于大气阻力使线速度减小,因而需要的向心力减小,而提供向心力的万有引力不变,故提供的向心力大于需要的向心力,卫星将做向心运动而使轨道半径减小,由于卫星在变轨后的轨道上运动时,满足,故增大而T减小,又,故a增大,则选项C正确。3. 经过用天文望远镜长期观测,人们在宇宙中已经发现了许多双星系统,通过对它们的研究,使我们对宇宙中物质的存在形式和分布情况有了较深刻的认识,双星系统由两个星体组成,其中每个星体的线度都远小于两星体之间的距离,一般双星系统距离其他星体很远,可以当作孤立系统来处理。现根据对某一双星系统的光度学测量确定;该双星系统中每个星体的质量都是M,两者相距L,它们正围绕两者连线的中点做圆周运动。(1)试计算该双星系统的运动周期;(2)若实验中观测到的运动周期为,且。为了理解与的不同,目前有一种流行的理论认为,在宇宙中可能存在一种望远镜观测不到的暗物质。作为一种简化模型,我们假定在以这两个星体连线为直径的球体内均匀分布这种暗物质。若不考虑其他暗物质的影响,请根据这一模型和上述观测结果确定该星系间这种暗物质的密度。答案:(1)双星均绕它们连线的中点做圆周运动,设运动的速率为v,得:(2)根据观测结果,星体的运动周期:这种差异是由双星系统(类似一个球)内均匀分布的暗物质引起的,均匀分布双星系统内的暗物质对双星系统的作用,与一个质点(质点的质量等于球内暗物质的总质量且位于中点O处)的作用相同。考虑暗物质作用后双星的速度即为观察到的速度,则有:因为周长一定时,周期和速度成反比,得:有以上各式得设所求暗物质的密度为,则有第三章 功和能一、水平方向的弹性碰撞1. 在光滑水平地面上有两个相同的弹性小球A、B,质量都为m,现B球静止,A球向B球运动,发生正碰。已知碰撞过程中总机械能守恒,两球压缩最紧时的弹性势能为EP,则碰前A球的速度等于( )A. B. C. D. 解析:设碰前A球的速度为v0,两球压缩最紧时的速度为v,根据动量守恒定律得出,由能量守恒定律得,联立解得,所以正确选项为C。2. 在原子核物理中,研究核子与核子关联的最有效途径是“双电荷交换反应”。这类反应的前半部分过程和下述力学模型类似,两个小球A和B用轻质弹簧相连,在光滑的水平直轨道上处于静止状态,在它们左边有一垂直于轨道的固定挡板P,右边有一小球C沿轨道以速度v0射向B球,C与B发生碰撞并立即结成一个整体D,在它们继续向左运动的过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变,然后,A球与挡板P发生碰撞,碰后A、D都静止不动,A与P接触而不粘连,过一段时间,突然解除锁定(锁定及解除锁定均无机械能损失),已知A、B、C三球的质量均为m。 (1)求弹簧长度刚被锁定后A球的速度。(2)求在A球离开挡板P之后的运动过程中,弹簧的最大弹性势能。解析:(1)设C球与B球粘结成D时,D的速度为v1,由动量守恒得当弹簧压至最短时,D与A的速度相等,设此速度为v2,由动量守恒得,由以上两式求得A的速度。(2)设弹簧长度被锁定后,贮存在弹簧中的势能为EP,由能量守恒,有撞击P后,A与D的动能都为零,解除锁定后,当弹簧刚恢复到自然长度时,势能全部转弯成D的动能,设D的速度为v3,则有以后弹簧伸长,A球离开挡板P,并获得速度,当A、D的速度相等时,弹簧伸至最长,设此时的速度为v4,由动量守恒得当弹簧伸到最长时,其势能最大,设此势能为EP39。,由能量守恒,有解以上各式得。3. ,轻弹簧的一端固定,另一端与滑块B相连,B静止在水平直导轨上,弹簧处在原长状态。另一质量与B相同滑块A,从导轨上的P点以某一初速度向B滑行,当A滑过距离l1时,与B相碰,碰撞时间极短,碰后A、B紧贴在一起运动,但互不粘连。已知最后A恰好返回出发点P并停止,滑块A和B与导轨的滑动摩擦因数都为,运动过程中弹簧最大形变量为l2,重力加速度为g,求A从P出发的初速度v0。 解析:令A、B质量皆为m,A刚接触B时速度为v1(碰前)由功能关系,有A、B碰撞过程中动量守恒,令碰后A、B共同运动的速度为v2有碰后A、B先一起向左运动,接着A、B一起被弹回,在弹簧恢复到原长时,设A、B的共同速度为v3,在这一过程中,弹簧势能始末状态都为零,利用功能关系,有此后A、B开始分离,A单独向右滑到P点停下,由功能关系有由以上各式,解得4. 用轻弹簧相连的质量均为2kg的A、B两物块都以的速度在光滑水平地面上运动,弹簧处于原长,质量为4kg的物体C静止在前方,B与C碰撞后二者粘在一起运动。求在以后的运动中,(1)当弹簧的弹性势能最大时物体A的速度多大?(2)弹性势能的最大值是多大?(3)A的速度有可能向左吗?为什么? 解析:(1)当A、B、C三者的速度相等时弹簧的弹性势能最大,由于A、B、C三者组成的系统动量守恒,有解得:(2)B、C碰撞时B、C组成的系统动量守恒,设碰后瞬间B、C两者速度为,则设物块A速度为vA时弹簧的弹性势能最大为EP,根据能量守恒(3)由系统动量守恒得设A的速度方向向左,则则作用后A、B、C动能之和实际上系统的机械能根据能量守恒定律,是不可能的。故A不可能向左运动。5. ,在光滑水平长直轨道上,A、B两小球之间有一处于原长的轻质弹簧,弹簧右端与B球连接,左端与A球接触但不粘连,已知,开始时A、B均静止。在A球的左边有一质量为的小球C以初速度向右运动,与A球碰撞后粘连在一起,成为一个复合球D,碰撞时间极短,接着逐渐压缩弹簧并使B球运动,经过一段时间后,D球与弹簧分离(弹簧始终处于弹性限度内)。 (1)上述过程中,弹簧的最大弹性势能是多少?(2)当弹簧恢复原长时B球速度是多大?(3)若开始时在B球右侧某位置固定一块挡板(图中未画出),在D球与弹簧分离前使B球与挡板发生碰撞,并在碰后立即将挡板撤走,设B球与挡板碰撞时间极短,碰后B球速度大小不变,但方向相反,试求出此后弹簧的弹性势能最大值的范围。答案:(1)设C与A相碰后速度为v1,三个球共同速度为v2时,弹簧的弹性势能最大,由动量守恒,能量守恒有:(2)设弹簧恢复原长时,D球速度为,B球速度为则有(3)设B球与挡板相碰前瞬间D、B两球速度与挡板碰后弹性势能最大,D、B两球速度相等,设为当时,最大时,最小,所以二、水平方向的非弹性碰撞1. ,木块与水平弹簧相连放在光滑的水平面上,子弹沿水平方向射入木块后留在木块内(时间极短),然后将弹簧压缩到最短。关于子弹和木块组成的系统,下列说法真确的是A. 从子弹开始射入到弹簧压缩到最短的过程中系统动量守恒B. 子弹射入木块的过程中,系统动量守恒C. 子弹射入木块的过程中,系统动量不守恒D. 木块压缩弹簧的过程中,系统动量守恒 答案:B2. ,一个长为L、质量为M的长方形木块,静止在光滑水平面上,一个质量为m的物块(可视为质点),以水平初速度从木块的左端滑向右端,设物块与木块间的动摩擦因数为,当物块与木块达到相对静止时,物块仍在长木块上,求系统机械能转化成内能的量Q。